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Fundamentals of Artificial Neural Networks

Terminology: AI, ML, DL, Generative AI, ANNs

Artificial Intelligence

Artificial Intelligence (Al)

Machine Learning (ML)

Deep Learning (DL)

Artificial Neural Networks
(ANNs)

Generative Al

e Broadest concept: any techniq[ue enabling
computers to mimic human intelligence

e Subset of Al: systems learn patterns from data
instead of explicit programming

» Subset of ML: uses neural networks with multiple
layers ("deep")
e Revolutionized Al in the past decade

e Foundation of Deep Learning

e Computational models inspired by biological neural
networks

e Creates new content (text, code, images)

e Uses transformer architectures (e.g., ChatGPT,
Claude)



Fundamentals of Artificial Neural Networks

Basic Architecture of Artificial Neural Networks
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Fundamentals of Artificial Neural Networks

Activation Functions

Sigmoid Tanh ReLU Why activation functions?
1 ez - e-z . . .
g9(z) = 1 +e? 9(z) = P g9(2) = max(0, 2) e Without them: network only computes linear transformations
A R R e Real-world problems need curves, bends, sophisticated boundaries
1+ | + e Activation functions introduce non-linearity
K e Enable networks to approximate any complex relationship
,:| () l: ’ 0 1 : >
-] -+
Sigmoid Tanh (Hyperbolic Tangent) ReLU (Rectified Linear Unit)

S-shaped curve, squashes input to range Similar to sigmoid, outputs range (-1, 1)
(0,1) Zero-centered: often works better in

Useful for outputs as probabilities hidden layers

Most popular for hidden layers
f(z) - max(o, z)

Simple yet remarkably effective



Fundamentals of Artificial Neural Networks

Architecture Types

Artificial neural network
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Fundamentals of Artificial Neural Networks

Types of Learning

Supervised Learning

Supervised Learning
e earning with labeled data (input-output pairs, correct answer known)
* Network compares predictions to true answers _
e Adjusts to minimize errors

Unsupervised Learning

Unsupervised Learning

e earning from unlabeled data
*Network discovers patterns without being told what to look for

e Techniques: clustering, anomaly detection

» Useful when you don't know in advance what kinds of faults might occur

Reinforcement Learning

e earning through interaction

e Agent takes actions, receives rewards or penalties
e Learns which actions lead to desirable outcomes
e Powerful for sequential decision-making tasks

Note : The Supervised and Unsupervised learning methods are most popular forms of learning compared to Reinforced learning



Fundamentals of Artificial Neural Networks

Key Training Concepts

Overfitting

Network learns training data too well
Memorizes it, including noise and peculiarities
Rather than learning general patterns
Causes:

e Network architecture too complex for available data
e Training continues for too long

e Insufficient training data

e Lack of regularization techniques

Consequences:

o Excellent performance on training data
e Poor performance on new, unseen data

Underfitting
Network too simple or hasn't trained enough

Fails to capture important patterns
Poor performance even on training data

The Goal

e Network complex enough to learn meaningful patterns
e Not so complex that it memorizes noise
e Balance crucial for models that generalize to real-world

applications



Renewable Enerqgy Systems

Types of Renewable Energy Sources

Solar Energy

Converts sunlight to electricity (PV panels) or concentrates solar heat
Intermittent (only works when sun shines)

Variable (depends on cloud cover, time of day, season)

3

Wind Enerqy

Turbines convert wind's kinetic energy to electricity

Variable and intermittent

Turbines generate when wind blows within specific speed ranges

LJJL

Hydropower
- Harnesses energy from flowing or falling water
Most mature renewable technology

oeovwewew

\

Other sources Hybrid systems

Biomass, geothermal, ocean energy Combine multiple sources with energy storage

SHEIIES, e, UnEhEY (e CRS, Improve reliability and dispatchability




Renewable Enerqgy Systems

Trends in Renewable Enerqy

19% 307

907% 70%

2000 2023 Solar PV Wind
Renewables share of global Renewables share of global Installation cost reduction since Turbine cost reduction since
electricity electricity 2010 2010

[J Results

e Solar and wind are now among the most
competitive sources of new electricity generation

e (Creating jobs in manufacturing, installation,
and maintenance

Our World
in Data

Electricity production by source. World

Measured in terawatt-hours.
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Data source: Ember (2025); Energy Institute - Statistical Review of World Energy (2025) - Learn more about this data




Renewable Enerqgy Systems

Challenges Addressable by ANNs

]

o i A
Forecasting Generation Equipment Diagnostics System Optimization
Solar and wind output varies with weather Renewable installations operate in harsh Maximum Power Point Tracking (MPPT)
conditions, making accurate prediction environments. Early detection of ensures solar panels and wind turbines
difficult. Grid operators need reliable developing faults allows proactive extract maximum available energy despite
forecasts hours to days ahead to balance maintenance, preventing costly failures continuously changing conditions.
supply and demand, schedule conventional and extending equipment life. The Traditional methods work but can be slow
generation, and participate in electricity challenge lies in identifying subtle fault to respond or get trapped at suboptimal
markets. Inaccurate forecasts lead to signatures in complex sensor data. operating points.

economic losses and grid instability.

Why ANNs excel: These challenges involve complex, non-linear relationships between many variables, require processing large volumes of sensor data,
and benefit from learning patterns from historical experience.




Artificial Neural Networks for Renewable Enerqgy Systems

Enerqy Forecasting

Solar Enerqy Forecasting

Inputs: Challenges:

Current and historical solar irradiance, temperature, Variable irradiance depends on cloud cover, time of day, season, atmospheric conditions
humidity, cloud cover, wind conditions, historical power .

output, time-related features Architectures:

Outputs: e MLPs commonly used

P ion h : h e LSTMs capture temporal dependencies
dgwearh%grclgratlon orecasts (short-term: minutes to hours; ,  cNNs process satellite imagery and sky camera images to predict cloud movements and

irradiance changes

e ANNSs incorporate NWP model outputs for day-ahead forecasts, learn to correct biases and
downscale to specific locations

Wind Energqy Forecasting

Inputs: Challenges:

Recent wind speed and direction, atmospheric conditions,  Turbulent, rapidly changing nature; generation only within cut-in to cut-out speeds
historical Rlower output, turbulence intensity; for longer

horizons: NWP model outputs; data from multiple locations Architectures:

Outputs: e LSTMs excel at modeling temporal dynamics and temporal correlation

Power generation forecasts (short-term; day-ahead for e ANNSs consider data from upstream weather stations or wind farms

market participation)  ANNSs post-process NWP outputs, correct systematic errors based on historical performance

Hydropower Forecasting

Inputs: Challenges:

Historical streamflow, precipitation (observed and ~ Complex non-linear hydrological relationships: precipitation-streamflow connection involves soil
forecasted), snow water equivalent, temperature, reservoir  conditions, vegetation, topography, seasonal variations
levels, soil moisture, climate indices

Outputs:

Streamflow predictions into reservoirs (short-term for
run-of-river; seasonal for reservoir-based)

Architectures:
ANNSs learn to approximate these complex relationships from historical data



Artificial Neural Networks for Renewable Enerqgy Systems

Fault Detection and Diagnostics

Solar Photovoltaic Systems

Inputs:
Current-voltage characteristics, power

Common faults:
e Partial shading and soiling

Architectures:

MLPs classify specific fault types based on operational signatures

output patterns, temperatures, solar e Module degradation and hotspots « Autoencoders compress and reconstruct input
irradiance, string currents and voltages e Inverter failures data ()reconstructlon error spikes when faults
Outputs: « Connection problems ISl ,
. NN lyze th I f sol s, detect hotspot
Fault classifications, anomaly alerts * Ground faults gnd %hae??ng%no%g?e;mages OF SOlar paneis, etett NOLSPots
e LSTMs learn normal aging patterns, detect gradual degradation

Wind Turbines
Inputs: Common faults: Architectures:
Vibration signals, acoustic emissions, oil e (Gearbox problems e (CNNs analyze spectrograms (visual
temperature, SCADA data (power output, e Generator faults representations of vibration frequencies over
rotor speed, temperatures, wind speed), « Blade damage time), recognize fault-specific patterns
current and voltage «  Bearing failures o I_STI\/IS analxzellong—tﬁr.m SCADA data fcre?ds,
Outputs: e Pitch system malfunctions deéatrgcpapmas relationships between variables,
Fault classifications, maintenance alerts e Autoencoders trained on healthy turbine data detect

multivariate anomalies
Hydropower Plants
Inputs: Common faults: Architectures:
Vibration and acoustic signatures, bearing e Turbine cavitation and erosion e Feedforward networks classify operating
temperatures, generator partial discharge e Bearing wear conditions, associate with expected vibration or
activity, efficiency trends, water quality « Generator insulation degradation temperature signatures

. e LSTMs track long-term trends indicating gradual

Outputs:

Condition classifications,
wear trend predictions

Mechanical seal problems

wear (e.g., turbine efficiency decreases slowly
due to erosion; accelerated loss indicates
cavitation damage)



Artificial Neural Networks for Renewable Enerqgy Systems

Additional Applications

Maximum Power Point Tracking (MPPT)

Solar panels and wind turbines have optimal operating points that shift with environmental changes. ANNSs can learn complex
mappings between conditions and optimal settings. For solar systems under partial shading, ANNs' non-linear capability helps
navigate power-voltage curves with multiple peaks. For wind turbines, ANNs output optimal generator torque or rotor speed as wind
fluctuates. While well-tuned conventional MPPT algorithms perform effectively, ANNs provide incremental improvements,
particularly in complex scenarios.

Load Forecasting

Predicting electricity demand complements generation forecasting for grid management. ANNs forecast consumption based on
historical patterns, weather, time factors, and socio-economic indicators.

Resource Assessment

Before installing systems, ANNs estimate long-term average solar irradiance or wind speed at candidate sites using limited
measurement data, topographical features, and correlations with nearby locations, reducing assessment time and cost.

System Optimization

ANNSs approximate optimal control strategies for real-time operation of renewable systems and hybrid configurations, learning to
adjust parameters to improve energy output, economic return, or equipment longevity.

Power Quality Management

ANNSs help predict power quality events and determine corrective actions like reactive power compensation or storage dispatch.



Artificial Neural Networks for Renewable Enerqy Systems

Hybrid and Ensemble Approaches

p

Ensemble Methods

e Train multiple neural networks with different architectures or
initializations and combine their predictions through averaging or
voting. Ensembles improve accuracy and robustness.

e Example for wind forecasting: combine LSTM for temporal

patterns, feedforward network for statistical features, CNN for
weather imagery

0

Integrating with Other Techniques

e Adaptive Neuro-Fuzzy Inference Systems (ANFIS) combine neural
learning with fuzzy logic reasoning, providing interpretable rules
while optimizing from data

e Valuable when expert knowledge exists but exact relationships
are uncertain

B

Hybrid Architectures

%R

Connect different network types

CNN-LSTM hybrids: CNN layers extract spatial features from
weather maps — feed into LSTM layers modeling temporal
dynamics

Autoencoder-classifier combinations: first learn efficient
representations — then classify for fault diagnosis

Combining with Physical Models

Post-processing Numerical Weather Prediction with ANNs widely
used operationally

NWP provides physically consistent forecasts, while ANNs learn to correct
biases and downscale to specific locations, combining physics with
statistical learning.



Real World Applications of ANNs for Renewable Enerqgy Systems

DeepMind (a subsidiary of Google) - Wind Enerqy Forecasting

Location: United States (central region)

Scale: ~700 MW of wind power capacity

Deployed since: ~2018

Application: Predict 36-hour-ahead wind power output

Result: ~20% increase in economic value of the wind energy portfolio

Architecture: Deep neural network (possibly LSTMs or hybrid architectures) trained on years
of historical data; inputs: weather forecasts and historical turbine data; output: 36-hour

wer for . : -
OB VOIS Machine learning can increase the
. . . value of wind ener
The DeepMind system predicts wind power output 36 hours ahead... gy
o0 i Predicted Economic Value

($/megawatt-hour)

Actual

[

Generation (MW)
o,
o

Typical Better Better Operational  Wind
wind prediction  prediction cost savings farm
Fri Sat Sun . of Of. : fromML .
12/16 farm  wind power electricity using
production supply and ML
demand

lllustrative results from
2018 Google/DeepMind field study



Real World Applications of ANNs for Renewable Enerqgy Systems
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Siemens Gamesa Renewable Enerqy (SGRE) - Wind Turbine Blade Inspection

Location: Denmark (Aalborg), United Kingdom (Hull), etc.

Scale: ~5000 turbines installed

Deployed since: ~2017 i
Application: Automated analysis of blade inspection data (drone images and ultrasonic scans) to detect defects
Result: Inspection time reduced up to ~75% (cuts inspection times for windmill turbine blades from 6 hours to just
1.5 hours, resulting in significant cost savings)

Architecture: most likely CNN; inputs: high-resolution blade images and scan data; output: defect classifications
and locations

State Power Investment Corporation (SPIC) - Hydropower Smart OgM

Location: China (Hunan Province), Wugiangxi and Jinweizhou plants

Scale: Wugiangxi: 1200 MW; Jinweizhou: 63.18 MW

Deployed since: November 2020

Application: Smart remote O&M using Al diagnostics, condition monitoring, and lifetime prediction

Result: ~10% reduction in maintenance costs; +0.5% power production time; +0.3% generation

Architecture: Neural networks in edge-cloud architecture; inputs: image, sound, thermal data from robots/drones;
outputs: diagnostics, lifetime prognosis, maintenance suggestions



Conclusions

Key Insights

e ANNs have matured into practical tools addressing real renewable energy challenges

o We've seen how ANNSs fit within the broader Artificial Intelligence landscape as the foundation of deep learning, and how their fundamental
architecture - layers of interconnected neurons with weights, biases, and activation functions -- enables learning complex patterns from data.

Main Limitations

e Data requirements: need substantial quality data for training

e Models are location-specific

e Computational complexity: training deep networks demands significant resources

o "Black box" problem: understanding why networks make predictions is challenging

e Sensitivity to input quality: sensor drift or novel conditions cause unexpected predictions
e Need for regular retraining: system characteristics change over time

e Qverfitting risks: complex networks may memorize rather than generalize

Future Outlook

e Asrenewable energy penetration increases globally, the ANNSs field continues evolving with newer architectures, improved training methods,
and better integration with physical models.
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Questions?




