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Fundamentals of Artificial Neural Networks

Terminology: AI, ML, DL, Generative AI, ANNs

Foundation of Deep Learning

•Broadest concept: any technique enabling 
computers to mimic human intelligenceArtificial Intelligence (AI)

•Subset of AI: systems learn patterns from data 
instead of explicit programmingMachine Learning (ML)

•Subset of ML: uses neural networks with multiple 
layers ("deep")

•Revolutionized AI in the past decade
Deep Learning (DL)

•Foundation of Deep Learning
•Computational models inspired by biological neural 

networks

Artificial Neural Networks 
(ANNs)

•Creates new content (text, code, images)
•Uses transformer architectures (e.g., ChatGPT, 

Claude)
Generative AI



Fundamentals of Artificial Neural Networks

Basic Architecture of Artificial Neural Networks

Artificial Neuron:
• Receives multiple inputs (x₁, x₂, x₃...)

• Each input multiplied by weight (w₁, w₂, w₃...)

• Weighted inputs summed together

• Bias term added

• Result passes through activation function

• Input layer: receives raw data

• Hidden layers: intermediate 

computations and feature extraction

• Output layer: produces final predictions

Biological Neuron

Network Layers:



Fundamentals of Artificial Neural Networks

Activation Functions
Why activation functions?

• Without them: network only computes linear transformations

• Real-world problems need curves, bends, sophisticated boundaries

• Activation functions introduce non-linearity

• Enable networks to approximate any complex relationship

Common Activation Functions:

Sigmoid

S-shaped curve, squashes input to range 

(0, 1)

Useful for outputs as probabilities

Tanh (Hyperbolic Tangent)

Similar to sigmoid, outputs range (-1, 1)

Zero-centered: often works better in 

hidden layers

ReLU (Rectified Linear Unit)

Most popular for hidden layers

f(z) = max(0, z)

Simple yet remarkably effective



Fundamentals of Artificial Neural Networks

Architecture Types 



Fundamentals of Artificial Neural Networks

Types of Learning

Note : The Supervised and Unsupervised learning methods are most popular forms of learning compared to Reinforced learning

Supervised Learning
•Learning with labeled data (input-output pairs, correct answer known)
•Network compares predictions to true answers
•Adjusts to minimize errors

Unsupervised Learning
•Learning from unlabeled data
•Network discovers patterns without being told what to look for
•Techniques: clustering, anomaly detection
•Useful when you don't know in advance what kinds of faults might occur

Reinforcement Learning
•Learning through interaction
•Agent takes actions, receives rewards or penalties
•Learns which actions lead to desirable outcomes
•Powerful for sequential decision-making tasks



Fundamentals of Artificial Neural Networks

Key Training Concepts

Overfitting
Network learns training data too well

Memorizes it, including noise and peculiarities

Rather than learning general patterns

Causes:
• Network architecture too complex for available data
• Training continues for too long
• Insufficient training data
• Lack of regularization techniques

Consequences:
• Excellent performance on training data
• Poor performance on new, unseen data

Underfitting
Network too simple or hasn't trained enough

Fails to capture important patterns

Poor performance even on training data

The Goal
• Network complex enough to learn meaningful patterns
• Not so complex that it memorizes noise
• Balance crucial for models that generalize to real-world

applications



Renewable Energy Systems

Types of Renewable Energy Sources
Solar Energy

Converts sunlight to electricity (PV panels) or concentrates solar heat

Intermittent (only works when sun shines)

Variable (depends on cloud cover, time of day, season)

Wind Energy

Turbines convert wind's kinetic energy to electricity

Variable and intermittent

Turbines generate when wind blows within specific speed ranges

Hydropower

Harnesses energy from flowing or falling water

Most mature renewable technology

Other sources

Biomass, geothermal, ocean energy 
(waves, tides, thermal gradients)

Hybrid systems

Combine multiple sources with energy storage

Improve reliability and dispatchability



Renewable Energy Systems

Trends in Renewable Energy
19%
2000

Renewables share of global 

electricity

30%
2023

Renewables share of global 

electricity

90%
Solar PV

Installation cost reduction since 

2010

70%
Wind

Turbine cost reduction since 

2010

Results
• Solar and wind are now among the most

competitive sources of new electricity generation

• Creating jobs in manufacturing, installation, 

and maintenance



Renewable Energy Systems

Challenges Addressable by ANNs

Forecasting Generation Equipment Diagnostics System Optimization

Why ANNs excel: These challenges involve complex, non-linear relationships between many variables, require processing large volumes of sensor data, 

and benefit from learning patterns from historical experience.

Solar and wind output varies with weather 

conditions, making accurate prediction 

difficult. Grid operators need reliable 

forecasts hours to days ahead to balance 

supply and demand, schedule conventional 

generation, and participate in electricity 

markets. Inaccurate forecasts lead to 

economic losses and grid instability.

Renewable installations operate in harsh 

environments. Early detection of 

developing faults allows proactive 

maintenance, preventing costly failures 

and extending equipment life. The 

challenge lies in identifying subtle fault 

signatures in complex sensor data.

Maximum Power Point Tracking (MPPT) 

ensures solar panels and wind turbines 

extract maximum available energy despite 

continuously changing conditions. 

Traditional methods work but can be slow 

to respond or get trapped at suboptimal 

operating points.



Artificial Neural Networks for Renewable Energy Systems

Energy Forecasting
Solar Energy Forecasting

Inputs:
Current and historical solar irradiance, temperature, 
humidity, cloud cover, wind conditions, historical power 
output, time-related features

Outputs:
Power generation forecasts (short-term: minutes to hours; 
day-ahead)

Challenges:
Variable irradiance depends on cloud cover, time of day, season, atmospheric conditions

Architectures:
• MLPs commonly used
• LSTMs capture temporal dependencies
• CNNs process satellite imagery and sky camera images to predict cloud movements and

irradiance changes

• ANNs incorporate NWP model outputs for day-ahead forecasts, learn to correct biases and 
downscale to specific locations

Wind Energy Forecasting

Inputs:
Recent wind speed and direction, atmospheric conditions, 
historical power output, turbulence intensity; for longer 
horizons: NWP model outputs; data from multiple locations

Outputs:
Power generation forecasts (short-term; day-ahead for 
market participation)

Challenges:
Turbulent, rapidly changing nature; generation only within cut-in to cut-out speeds

Architectures:
• LSTMs excel at modeling temporal dynamics and temporal correlation
• ANNs consider data from upstream weather stations or wind farms
• ANNs post-process NWP outputs, correct systematic errors based on historical performance

Hydropower Forecasting

Inputs:
Historical streamflow, precipitation (observed and 
forecasted), snow water equivalent, temperature, reservoir 
levels, soil moisture, climate indices

Outputs:
Streamflow predictions into reservoirs (short-term for 
run-of-river; seasonal for reservoir-based)

Challenges:
Complex non-linear hydrological relationships: precipitation-streamflow connection involves soil 
conditions, vegetation, topography, seasonal variations

Architectures:
ANNs learn to approximate these complex relationships from historical data



Artificial Neural Networks for Renewable Energy Systems

Fault Detection and Diagnostics
Solar Photovoltaic Systems

Inputs:
Current-voltage characteristics, power 
output patterns, temperatures, solar 
irradiance, string currents and voltages

Outputs:
Fault classifications, anomaly alerts

Common faults:
• Partial shading and soiling
• Module degradation and hotspots
• Inverter failures
• Connection problems
• Ground faults

Architectures:
• MLPs classify specific fault types based on operational signatures
• Autoencoders compress and reconstruct input 

data (reconstruction error spikes when faults 
occur)

• CNNs analyze thermal images of solar panels, detect hotspots
and thermal anomalies

• LSTMs learn normal aging patterns, detect gradual degradation

Wind Turbines

Inputs:
Vibration signals, acoustic emissions, oil 
temperature, SCADA data (power output, 
rotor speed, temperatures, wind speed), 
current and voltage

Outputs:
Fault classifications, maintenance alerts

Common faults:
• Gearbox problems
• Generator faults
• Blade damage
• Bearing failures
• Pitch system malfunctions

Architectures:
• CNNs analyze spectrograms (visual 

representations of vibration frequencies over 
time), recognize fault-specific patterns

• LSTMs analyze long-term SCADA data trends, 
learn normal relationships between variables, 
detect drifts

• Autoencoders trained on healthy turbine data detect 
multivariate anomalies

Hydropower Plants

Inputs:
Vibration and acoustic signatures, bearing 
temperatures, generator partial discharge 
activity, efficiency trends, water quality

Outputs:
Condition classifications, 
wear trend predictions

Common faults:
• Turbine cavitation and erosion
• Bearing wear
• Generator insulation degradation
• Mechanical seal problems

Architectures:
• Feedforward networks classify operating 

conditions, associate with expected vibration or 
temperature signatures

• LSTMs track long-term trends indicating gradual 
wear (e.g., turbine efficiency decreases slowly 
due to erosion; accelerated loss indicates 
cavitation damage)



Artificial Neural Networks for Renewable Energy Systems

Additional Applications

Maximum Power Point Tracking (MPPT)

Solar panels and wind turbines have optimal operating points that shift with environmental changes. ANNs can learn complex 

mappings between conditions and optimal settings. For solar systems under partial shading, ANNs' non-linear capability helps 

navigate power-voltage curves with multiple peaks. For wind turbines, ANNs output optimal generator torque or rotor speed as wind 

fluctuates. While well-tuned conventional MPPT algorithms perform effectively, ANNs provide incremental improvements, 

particularly in complex scenarios.

Load Forecasting

Predicting electricity demand complements generation forecasting for grid management. ANNs forecast consumption based on 

historical patterns, weather, time factors, and socio-economic indicators.

Resource Assessment

Before installing systems, ANNs estimate long-term average solar irradiance or wind speed at candidate sites using limited 

measurement data, topographical features, and correlations with nearby locations, reducing assessment time and cost.

System Optimization

ANNs approximate optimal control strategies for real-time operation of renewable systems and hybrid configurations, learning to 

adjust parameters to improve energy output, economic return, or equipment longevity.

Power Quality Management

ANNs help predict power quality events and determine corrective actions like reactive power compensation or storage dispatch.



Artificial Neural Networks for Renewable Energy Systems

Hybrid and Ensemble Approaches

Ensemble Methods

• Train multiple neural networks with different architectures or 

initializations and combine their predictions through averaging or 

voting. Ensembles improve accuracy and robustness. 

• Example for wind forecasting: combine LSTM for temporal 

patterns, feedforward network for statistical features, CNN for 

weather imagery

Hybrid Architectures

• Connect different network types

• CNN-LSTM hybrids: CNN layers extract spatial features from 

weather maps → feed into LSTM layers modeling temporal 

dynamics

• Autoencoder-classifier combinations: first learn efficient 

representations → then classify for fault diagnosis

Integrating with Other Techniques

• Adaptive Neuro-Fuzzy Inference Systems (ANFIS) combine neural 

learning with fuzzy logic reasoning, providing interpretable rules 

while optimizing from data

• Valuable when expert knowledge exists but exact relationships 

are uncertain

Combining with Physical Models

• Post-processing Numerical Weather Prediction with ANNs widely 

used operationally

• NWP provides physically consistent forecasts, while ANNs learn to correct 

biases and downscale to specific locations, combining physics with 

statistical learning.



Real World Applications of ANNs for Renewable Energy Systems
DeepMind (a subsidiary of Google) - Wind Energy Forecasting

Location: United States (central region)

Scale: ~700 MW of wind power capacity

Deployed since: ~2018

Application: Predict 36-hour-ahead wind power output

Result: ~20% increase in economic value of the wind energy portfolio

Architecture: Deep neural network(possibly LSTMs or hybrid architectures) trained on years 

of historical data; inputs: weather forecasts and historical turbine data; output: 36-hour 

power forecasts



Real World Applications of ANNs for Renewable Energy Systems

Siemens Gamesa Renewable Energy (SGRE) - Wind Turbine Blade Inspection

State Power Investment Corporation (SPIC) - Hydropower Smart O&M

Location: Denmark (Aalborg), United Kingdom (Hull), etc.

Scale: ~5000 turbines installed

Deployed since: ~2017

Application: Automated analysis of blade inspection data (drone images and ultrasonic scans) to detect defects

Result: Inspection time reduced up to ~75% (cuts inspection times for windmill turbine blades from 6 hours to just 

1.5 hours, resulting in significant cost savings)

Architecture: most likely CNN; inputs: high-resolution blade images and scan data; output: defect classifications 

and locations

Location: China (Hunan Province), Wuqiangxi and Jinweizhou plants

Scale: Wuqiangxi: 1200 MW; Jinweizhou: 63.18 MW

Deployed since: November 2020

Application: Smart remote O&M using AI diagnostics, condition monitoring, and lifetime prediction

Result: ~10% reduction in maintenance costs; +0.5% power production time; +0.3% generation

Architecture: Neural networks in edge-cloud architecture; inputs: image, sound, thermal data from robots/drones; 

outputs: diagnostics, lifetime prognosis, maintenance suggestions



Conclusions
Key Insights

• ANNs have matured into practical tools addressing real renewable energy challenges

• We've seen how ANNs fit within the broader Artificial Intelligence landscape as the foundation of deep learning, and how their fundamental 

architecture - layers of interconnected neurons with weights, biases, and activation functions -- enables learning complex patterns from data.

Main Limitations

• Data requirements: need substantial quality data for training

• Models are location-specific

• Computational complexity: training deep networks demands significant resources

• "Black box" problem: understanding why networks make predictions is challenging

• Sensitivity to input quality: sensor drift or novel conditions cause unexpected predictions

• Need for regular retraining: system characteristics change over time

• Overfitting risks: complex networks may memorize rather than generalize

Future Outlook

• As renewable energy penetration increases globally, the ANNs field continues evolving with newer architectures, improved training methods, 

and better integration with physical models.
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