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Voltage-source inverter is a converter that transforms a 
dc-link voltage into an ac voltage

Voltage source inverter

M

INVERTER LOADPOWER 
SUPPLY DC-LINK

Depending on the direction of the power flow, the same 
converter can operate either as an inverter or as a 
transistor-based rectifier (PWM rectifier, active front-end).

In a voltage-source inverter, the dc-link is a capacitor, 
while the load exhibits a resistive–inductive character

There also exist current-source inverters, which are used 
less frequently and include an inductor in the dc circuit. 
In this case, the load has a resistive–capacitive character
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The most commonly used inverter is the two-level 
converter. It consists of switching legs composed of two 
transistors with antiparallel diodes. 

Topology of 2-level converter
Three-phase, three-leg converter

Single-phase half-bridge converter
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2-level converter – voltage levels
A transistor leg can be represented as a switch The negative terminal of the load is connected to the 

negative terminal of the dc-link.
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of the DC voltage 
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connected to the 
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of the DC voltage 
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The negative terminal of the load is connected to the 
midpoint of the dc-link.

This is not an AC voltage (a DC component is present). 
It is a DC–DC converter

This is an AC voltage

2 voltage levels — hence the 
name of the converter
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Virtual midpoint of the dc-link
In many converters, when one or several parallel-
connected capacitors are used, the DC-link midpoint does 
not exist. This applies to the converter:

- Single-phase, full-bridge converter

- Three-phase, three-leg converter

Defining such a point may facilitate the analysis of the 
converter’s operation, but it is not necessary.
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Star point voltage
The star-point voltage is also referred to as the common-
mode voltage. It is not equal to zero because the sum 
vA0+vB0+vC0 ≠ 0. 

vN0 t
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Vdc/6
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         -Vdc

The expression for vN0 can be derived using the nodal 
analysis for a symmetric three-phase load supplied by the 
voltages vA0, vB0 i vC0.
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For symmetric three-phase load ZA = ZB = ZC = Z. 
From nodal analysis the star-point voltage vN0.  
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

Eq. (3) is valid only for the symmetric three-phase loads, 
but such loads are most often connected to inverters. 

(3)

(2)

(1)
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Multilevel converters
There are converters with a higher number of levels.

Three-level converters:

Operation of the NPC converter
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Three-level converters use semiconductor switches with 
lower blocking voltages and make it possible to:

• reduce power losses 

• increase the dc-link voltage.
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Inverter voltage levels
In a three-phase converter, the following voltages are 
distinguished: 

• output voltages vA0, vB0 and vC0

• line-to-line voltages vAB, vBC and vCA

• phase voltages vA, vB and vC.  

Each of these voltages contains a different number of 
levels. 
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When pulse-width modulation (PWM) is applied, the 
voltages are switched. 
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t
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Vdc
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2 levels, 
Vmax = Vdc/2   

3 levels, 
Vmax = Vdc

5 levels, 
Vmax = (2/3)Vdc

Two voltage levels, hence the name of the converter.
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Pulse width modulation - fundamentals
Output voltage waveforms for different duty cycles D
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Duty cycle D changes the 
average value of the output 
voltage

The idea of pulse-width modulation is to vary the duty 
cycle D in such a way that the average value (averaged 
over the switching period TS) reproduces the signal that 
controls the duty-cycle variation. 
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Pulse width modulation - fundamentals
In inverters, instead of using the concept of the duty cycle 
D in pulse-width modulation, the term modulating signal 
sM is used. 
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The switching signals of the converter transistors (s₁, s₂) 
are obtained by comparing the modulating signal with a 
triangular carrier signal sₙ of frequency fS = 1/TS.

Upper switch S1 turns on when signal s1

Lower switch S2 turns on when signal s2

 1 M N1 whens s s

 2 M N1 whens s s

When the modulating signal sM is a sinusoid of the form 
of                              , two parameters are defined: 

m
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Modulation index

Frequency index

 M m msin 2s A f t 
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Pulse width modulation - fundamentals
Examples: 

Different modulation indices ma = 0.9 and ma = 0.4.  
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Examples: 

Different frequency indices mf = 20 and mf = 50.  

Other parameters unchanged: 

fm = 50 Hz, mf = 20, Vdc = 100 V. 
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Pulse width modulation - fundamentals
Examples: 

Different values of fundamental frequency 
fm = 25 Hz and fm =  50 Hz. 

Other parameters unchanged: 

ma = 0.9; mf = 30 (the switching frequency is changed 
due to a change of fm); Vdc = 100 V. 
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The carrier signal sN may vary in the range from –1 to 1 or 
from 0 to 1. In microcontroller implementations, the 
carrier signal corresponds to the value of a counter that 
increments from 0 to an integer value of several hundred. 
Examples of using a carrier signal varying in the ranges 
(–1, 1) and (0, 1). 
The modulating signal sM must be adjusted accordingly

Regardless of the chosen method, the output voltage is the 
same in both cases.
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Pulse width modulation – harmonic spectrum
Increasing the switching frequency improves the shape of 
the output current waveform, but it also increases the 
switching losses in the inverter.
In the output voltage waveform, in addition to the 
fundamental harmonic, there are harmonics associated 
with the switching frequency and their higher-order 
components. Their orders depend only on ma.
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Simulation results in PLECS for ma = 0.8.

The harmonic amplitudes do not change for the same 
modulation index ma. 

Frequency / Hz
0 1000 2000 3000 4000 5000 6000 7000

-10

0

10

20

30

40

50

The amplitudes of the harmonics may exceed the 
amplitude of the fundamental harmonic.
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Pulse width modulation – harmonic spectrum
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0.10.20.30.40.50.60.70.80.91.0ma

0.100.200.300.400.500.600.700.800.901.00h = 1

1.271.241.201.151.081.010.920.820.710.60h = mf

0.000.020.030.060.090.130.170.220.270.32h = mf±2

0.100.190.270.330.360.370.350.310.260.18h = 2mf±1

0.000.000.010.020.040.070.100.140.180.21h = 2mf±3

h = 1 – fundamental harmonic
h = mf – first harmonic of the carrier signal
h = mf±2 – sideband harmonics of the first carrier harmonic
h = 2mf±1 – sideband harmonics of the second carrier harmonic
h = 2mf±3 – sideband harmonics of the second carrier harmonic

Amplitudes of the most significant harmonics for different 
modulation indices ma. 

The linear relationship of the fundamental harmonic 
(h = 1) is a fundamental feature of modulation methods.

Apart from the harmonics listed above, additional 
sideband harmonics exist whose amplitudes are very 
small on a linear scale but can be revealed on a 
logarithmic scale (in dB). 
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Pulse width modulation – harmonic spectrum
Simulation results in PLECS for ma = 0,8 and mf = 40.
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Example of half-bridge inverter R = 10 Ω, L = 10 mH, 
Vdc = 50 V ma = 0,8 and mf = 40 (fS = 2 kHz).  
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Pulse width modulation – harmonic spectrum
Simulation results in PLECS for ma = 0,8 and mf = 40 Simulation results in PLECS for ma = 0,8 and mf = 80
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Pulse width modulation – Are there any limitations on mf?
1. Can the frequency index mf  be even? 
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For even values of mf , even harmonics appear in the 
spectrum, but their amplitudes are very small. 
In both cases THDU = 145.768%. 

2. Can the frequency index mf  be non-integer?
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In this case, the voltage spectrum contains all even and 
odd harmonics, and a dc component also appears.

The value of the THD  coefficient was determined 
THDU = 143.94%!!! 

In this case, spectral leakage occurs (the component of 
frequency 10.5 fm leaks into the 10th and 11th harmonics).  
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Pulse width modulation – large values of mf

For large values of mf, even harmonics appear in the 
voltage spectra, or leakage phenomena occur. 

The influence of these additional components on the THD 
value is negligible and is not a reason to avoid using even 
frequency indices or those that are non-integer.

In high-power converters, where the switching frequency 
is low, the discussed issues are important.

In grid-connected converters, where the fundamental 
harmonic depends on the variable grid frequency, it is not 
possible to maintain an integer ratio mf.  
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For three-phase inverters, it is recommended that mf be a 
multiple of 3 e.g., 39, 201. 
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Pulse width modulation – carrier waveform influence
The carrier signal analysed so far had a triangular shape, 
which is the recommended carrier waveform for most 
PWM modulation schemes. Another possible carrier is the 
sawtooth waveform, commonly used in DC-DC 
converters.

The harmonic spectrum of the output voltage when using 
PWM with a triangular carrier for mf = 40 (ma = 0,8) and 
THD is 145,76%.  

Harmonic spectrum of the output voltage when using 
PWM with a sawtooth carrier for mf = 40 i ma = 0,8. 
THD is the same as for the triangular carrier, 145,76%. 
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In the sidebands of harmonics associated with the carrier 
frequency, both even and odd harmonics appear. 
However, the presence of these harmonics does not 
significantly affect the value of the voltage THD 
coefficient. 
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Pulse width modulation – regular sampling method
In modern microprocessor-based systems, PWM signals 
are generated using dedicated modules in which the value 
of the modulating signal is cyclically updated.

The method in which the modulating signal is updated 
once or twice per switching period is called the regular 
sampling method. The methods discussed earlier are 
natural sampling methods
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Regular sampling method with single update at SN = -1

Regular sampling method with double update at SN = -1 and SN = 1

In all presented cases THDU is the same and equals 147%. 

Note: in the regular sampling method, the update 
should occur at −1 or +1 of the carrier signal
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Comparison of harmonic spectra
Normalized voltage harmonics and THD for mf = 39 and  
R = 10 Ω, L =10 mH, Vdc = 50 V.  

Regular methodNatural method
VA0h/(Vdc/2) SN

tri DU
SN

sawtooth
SN

triangular
SN

sawtooth
SN

triangular
mf = 39 (odd number)

0.81810.60160.81810.60160.8181odd mf

-0.29600.02600.3144-even mf±1
0.22780.28080.22710.28510.2198odd mf±2

-0.15090.00660.1395-even mf±3
0.01010.05960.00990.04780.0076odd mf±4

-0.3721-0.3721-even   2mf

0.30520.10570.30490.10520.3143odd 2mf±1
-0.00210.02280.0119-even2mf±2

0.14540.09880.14430.11460.1395odd 2mf±3
-0.12100.00860.1250-even  2mf±4

145.80145.88145.97145.77145.77THDU

9.800710.22749.81459.81449.8036THDI

Normalized voltage harmonics and THD for mf = 40 and  
R = 10 Ω, L =10 mH, Vdc = 50 V.  

Regular methodNatural method
VA0h/(Vdc/2) SN

tri DU
SN

sawtooth
SN

triangular
SN

sawtooth
SN

triangular
mf = 40 (even number)

0.81810.60160.81810.60160.8181even mf

-0.29650.02530.3144-odd mf±1
0.22760.28090.22690.28510.2198even mf±2

-0.15060.00640.1395-odd mf±3
0.01000.05930.00990.04780.0076even   mf±4

-0.3721-0.3721-odd 2mf

0.30540.10570.30520.10520.3143even2mf±1
-0.00170.02220.0119-odd 2mf±2

0.14520.09920.14440.11460.1395even  2mf±3
-0.12110.00860.1250-odd 2mf±4

145.79145.87145.96145.77145.77THDU

9.55719.97219.56999.56979.5598THDI
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Analytical form of the harmonic spectrum for the PWM method

Output voltage waveform in the PWM method for a triangular carrier signal.  
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Output voltage waveform in the PWM method for a sawtooth carrier signal.  

J0 is the Bessel function of the first kind and 0 order
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Comments on PWM harmonic spectrum comparison
1. The most favorable harmonic spectrum is observed for 

the natural sampling method with a triangular carrier 
signal and for the regular method with a triangular 
carrier signal with double updating.

2. The observed absence of harmonics in the spectrum 
when using these methods is independent of whether 
mf is even or odd. However, when mf is odd, the 
harmonics that are absent in the spectrum are even 
harmonics. This is a beneficial feature, and it is 
recommended that mf be odd.

3. When using a sawtooth carrier signal, additional 
harmonics appear in the voltage spectrum with a 
slight reduction the value of the mf harmonic.

4. The voltage THD value is very similar in most cases.

5. The highest current THD value is observed in the 
regular method with a sawtooth carrier signal. This 
method is not recommended for modulating inverter 
signals.

6. It is important to remember that in the regular
sampling method, the modulating signal is updated at 
the minimum carrier signal value (-1 or 0). For a 
different carrier signal value, the voltage harmonic 
spectrum may change.

7. The double update method is the most recommended
PWM method.
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Conclusions
1. Different variants of two-level converter were shown. 

2. The role of application in the analysis of the midpoint 
of a dc circuit was explained.

3. The different types of voltages occurring in an inverter 
are presented, and the common mode voltage in three-
phase inverters was explained.

4. The basics of the PWM modulation method were
explained.

5. The influence of modulation parameters (modulation 
index, frequency index, fundamental harmonic 
frequency) on output voltage and current waveforms 
was discussed.

7. The harmonic spectrum of the voltage of a half-bridge 
inverter was presented, with harmonics divided into 
harmonics surrounding the fundamental harmonic, 
the carrier signal harmonic, and their sidebands.

8. The influence of harmonics on the output current 
harmonics was explained.

9. The effect of different values   of the mf factor (even, 
odd, and fractional) was analyzed.

10. Spectra for triangular and sawtooth carrier signals 
were presented.

11. Spectra for the regular sampling method were 
presented.
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